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Abstract

The basic dynamics of pipes conveying fluid is reviewed, establishing why this system has become a model dynamical

problem. The paper then discusses the radiation of the experience gained in studying this problem into other areas of

Applied Mechanics, particularly other problems in fluid–structure interactions involving slender structures and axial flows;

specifically the dynamics of (i) quasi-cylindrical bodies in axial flow or towed in quiescent fluid; (ii) cylindrical shells

containing or immersed in axial flow; and (iii) plates in axial flow. Applications, some of them wholly unexpected when the

work was done, are noted throughout.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

What is the underlying reason for all the interest in the dynamics of pipes conveying fluid? Why are there
approximately 550 significant publications on the subject (counting up to 2003)? The reason, as noted by
Paı̈doussis and Li [1], is that this has become a ‘‘model dynamical problem’’, a new paradigm in dynamics. In its
simplest form, the governing equation of motion is simple enough to solve, yet can demonstrate generic
features of much more complex dynamical systems; moreover, the theoretical results can in many cases be
validated by relatively easy-to-mount and to-perform experiments. As a result, this problem has been used as a
tool for understanding the behaviour of more complex systems, or as a vehicle in the search of new
phenomena and new dynamical features. A concrete example of this is the combined theoretical and
experimental study undertaken by Bishop and Fawzy [2], the ultimate purpose of which was the development
of methods for the prediction of aircraft flutter characteristics based on pre-flutter flight data—thus avoiding
dangerous full-scale or wind-tunnel experimentation in the critical zone.

The focus of this paper, however, will be on less remotely connected problems than aircraft flutter; rather, it
will concentrate on the dissemination of the understanding, methodology and experience gained in studying
the dynamics of fluid-conveying pipes to a set of related systems, namely slender structures subjected to axial
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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flow or travelling slender structures in quiescent fluid. In many cases, this lateral transfer of experience has also
served to bring to light similarities and significant differences in the classes of systems concerned.

The structure of this paper is as follows. First, the dynamics of pipes conveying fluid is reviewed in Section
2. This is followed by the discussion of the dynamics of kindred systems in Sections 3–5, pointing out
significant similarities and differences, as well as recounting the ever widening circle of applications to
engineering and physiological systems.

2. Dynamics of pipes conveying fluid

This is a highly abbreviated account of the dynamics of fluid-conveying pipes, adapted to the purposes of
this paper. For a fuller account, the reader is referred to Refs. [3;4, Appendix O].

2.1. Basic dynamics and energy considerations

Consider a pipe, modelled as an Euler–Bernoulli beam, conveying fluid. The pipe may be either supported at
both ends or cantilevered.

If gravity, internal damping, a possible elastic foundation, externally imposed tension and pressurization
effects are either absent or neglected, the linear equation of motion of the pipe takes the particularly simple
form [5,6]

EI
q4w
qx4
þMU2 q

2w

qx2
þ 2MU

q2w

qxqt
þ ðM þmÞ

q2w

qt2
¼ 0, (1)

where EI is the flexural rigidity of the pipe, M is the mass of fluid per unit length, flowing with a steady flow
velocity U ;m is the mass of the pipe per unit length, and w is the lateral deflection of the pipe; x and t are the
axial coordinate and time, respectively. The fluid forces are modelled in terms of a plug flow model, which is
the simplest possible form of the slender body approximation for the problem at hand. A fuller form of the
linear equation of motion is given in Appendix A.

Sequentially, the terms in Eq. (1) are associated with: flexural restoring forces, flow-related centrifugal
forces (associated with pipe curvature), flow-related Coriolis forces, and inertial forces. What is often
forgotten is that in the derivation of this equation the fluid has not been assumed to be inviscid; however,
viscous traction on the pipe and viscous pressure-loss forces exactly cancel out in the linear limit, as first
pointed out by Benjamin [5,7], and hence do not explicitly appear in Eq. (1).

Presuming the existence of periodic motions, the rate of work done by the fluid on the pipe over a period of
oscillation T may be obtained from Eq. (1):

DW ¼ �MU

Z T

0

qw

qt

� �2

þU
qw

qt

� �
qw

qx

� �" #�����
L

0

dt. (2)

Clearly if the ends of the pipe are positively supported, then ðqw=qtÞ ¼ 0 at both ends, and

DW ¼ 0. (3)

This implies that self-excited oscillatory motion (flutter) is not possible for pipes with both ends supported.
This fact does not imply that the system remains stable, no matter how high U may become. Indeed, looking at
Eq. (1) it is remarked that, if an externally applied tension were present, there would be an additional term
�Tðq2w=qx2Þ in the equation; thus, clearly, the þMU2ðq2w=qx2Þ term is an effective compression, associated
with the exiting fluid momentum at the downstream end. Then, by analogy to a column subjected to a
compressive load, we can see that for high enough U the system would lose stability by static divergence
(buckling).

A pipe with supported ends is a gyroscopic conservative system in Ziegler’s classical classification of
dynamical systems [8]. The conservativeness of the system is demonstrated by Eq. (3). All fluid-dynamic forces
do no work, including the Coriolis forces which are responsible for the gyroscopicity of the system.
Nevertheless, these forces are responsible for the non-existence of classical modes, i.e. modes with stationary
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Fig. 1. Dimensionless complex frequency diagrams for a pinned–pinned pipe; b ¼ 0:1 and G ¼ P ¼ a ¼ s ¼ k ¼ g ¼ 0 [see Eqs. (A.3) for

meaning of symbols] as a function of the dimensionless flow velocity u. The loci that actually lie on the axes have been drawn slightly off

the axes but parallel to them for the sake of clarity. —�—, first mode; —’—, second mode; —m—, third mode; — ’—�— ’—,

combined first and second modes; from Ref. [12].
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nodes; rather, the mode shapes involve travelling wave components (see, e.g., Ref. [3, Fig. 3.13]). Another
characteristic of such systems is that, if they lose stability, they must do so by static divergence.1

On the other hand, for a cantilevered system, assuming the free end is at x ¼ L, one obtains

DW ¼ �MU

Z T

0

qw

qt

� �2

L

þU
qw

qt

� �
L

qw

qx

� �
L

" #
dta0, (4)

where ðqw=qtÞL and ðqw=qxÞL are, respectively, the lateral velocity and slope of the free end. In Ziegler’s [8]
classification, since some of the forces associated with DWa0 are not velocity-dependent [the MU2ðq2w=qx2Þ

follower load leading to the second term in Eq. (4)], this is a non-conservative circulatory system. The
dynamics of this system was elucidated by means of this expression by Benjamin [5] and elaborated by
Paı̈doussis [9].

For U40 and sufficiently small for the second term within the square brackets to be much smaller than the
first, it is clear that DWo0, and free motions of the pipe are damped—an effect due to the Coriolis forces,
which, unlike the case of supported ends, in this case do do work. If, however, U is sufficiently large, while over
most of the cycle ðqw=qxÞL and ðqw=qtÞL have opposite signs, then DW40; i.e. the pipe will gain energy from
the flow, and free motions will be amplified. The requirement that ðqw=qxÞLðqw=qtÞLo0 suggests that, in the
course of flutter, the pipe must execute a sort of ‘dragging’, lagging motion that one would obtain when
laterally oscillating a flexible blade or baton in dense fluid. This, indeed, is what is observed, as remarked by
Bourrières [10], Benjamin [7] and Gregory and Paı̈doussis [11].
2.2. Pipes with supported ends

The dynamics of the system for a pipe simply supported at both ends is illustrated in the Argand diagram of
Fig. 1, for solutions of the form Zðx; tÞ ¼ Y ðxÞ expðiotÞ, where Z ¼ w=L; x ¼ x=L; t is the dimensionless time,
and o is the dimensionless eigenfrequency, which is generally complex; this being an infinite-dimensional
problem, there is an infinity of oi; i ¼ 1; 2; . . .1, which are found by solving Eq. (1) subject to appropriate
boundary conditions.

In Fig. 1, u is the dimensionless flow velocity, u ¼ ðM=EIÞ1=2UL; refer to Appendix A for the definition of
all dimensionless quantities. It is recalled that ReðoÞ is the dimensionless oscillation frequency, while ImðoÞ is
1This, however, is not absolutely always true; refer to Ref. [13].
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related to damping, the damping ratio being z ¼ ImðoÞ=ReðoÞ. The main dynamical features displayed in Fig.
1 are: (i) since dissipation is absent in this example, the eigenfrequencies are purely real and they are
diminished with increasing u, for 0puop; (ii) at u ¼ ucd ¼ p the system loses stability in its first mode by
divergence, via a pitchfork bifurcation, and thereafter the eigenfrequencies become purely imaginary.

For higher flow velocities, there is a second divergence, associated with the second mode, at u ¼ 2p. At
slightly higher u, the first and second-mode loci coalesce and the lower branch is associated with ReðoÞa0 and
ImðoÞo0, implying coupled-mode flutter for u46:375. This form of coupled-mode flutter has been called
‘‘Paı̈doussis flutter’’ by Done and Simpson [14] to differentiate it from the ‘‘Hamiltonian Hopf’’ type, and the
name stuck.

This is one of the many paradoxes associated with this system: whereas Eq. (3) shows that flutter is
not possible, linear analysis shows that it is. This is paradoxical, even though, strictly speaking, one cannot
rely on the predictions of linear theory beyond the onset of the first instability, i.e. for u4p. An attempt to
resolve this paradox was made by Done and Simpson [14], but it was Holmes who gave the definitive
answer with the aid of a simplified nonlinear form of the equation of motion, taking into account only
the tension induced by lateral deformation of the pipe. By means of a finite-dimensional analysis [15] and then
an infinite-dimensional analysis [16] utilizing the Lyapunov second (direct) method, Holmes showed that
‘‘Pipes supported at both ends cannot flutter’’, which is also the title of one of his two papers on the subject;
see Ref. [3, Chapter 5].

There remained a slight question mark on the non-occurrence of flutter, because Holmes utilized a
simplified equation of motion. This doubt, however, was laid to rest by the work of Yoshizawa et al. [17] and
Modarres-Sadeghi et al. [18]. In the former, no coupled-mode flutter was found up to u ’ 1:3ucd , where ucd is
the critical flow velocity for divergence, in a clamped–pinned pipe. In the latter, this was proved even more
definitively by carrying out calculations up to u ’ 3ucd for a pinned–pinned pipe (i.e. a pipe with both ends
simply supported), utilizing the full nonlinear equations of motion (Eqs. (A.5) and (A.6)).

All the work cited in the last two paragraphs relates to theoretical work. However, perhaps the most potent
evidence of non-occurrence of post-divergence of flutter in pipes with both ends supported is that it has never
been observed experimentally, though the loss of stability by divergence is easily observable.

2.3. Cantilevered pipes

The dynamics in this case is illustrated by another Argand diagram, Fig. 2. Here it is seen that the effect of
increasing u, provided it remains small, is to generate flow-induced damping in the system (in this case it was
assumed that there was none at u ¼ 0), since ImðoÞ40 and increasing with u. For u ’ 4, however, this
Fig. 2. The dimensionless complex frequency of the four lowest modes of the cantilevered system ðg ¼ a ¼ s ¼ k ¼ 0Þ as a function of the

dimensionless flow velocity, u, for b ¼ 0:2: —, exact analysis; - - -, four-mode Galerkin approximation; from Ref. [6].
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damping begins to be attenuated; it eventually vanishes (at u ’ 5:6) and then becomes negative, indicating the
onset of single-degree-of-freedom flutter via a Hopf bifurcation. The presence of a non-zero damping at u ¼ 0,
merely postpones the onset of flutter.

In this case, there is no contradiction between the results of Fig. 2 and the dynamical behaviour suggested
by Eq. (4).

The nonlinear dynamics of the system is, to this extent, concordant: the Hopf bifurcation gives rise to limit-
cycle oscillations, which is also what is observed experimentally. However, the dynamics can be much more
complex in this case (see, e.g., Ref. [3, Chapter 5]). The Hopf bifurcation can be either subcritical (implying a
softening nonlinear behaviour and hysteresis as u is decreased) or supercritical, depending on the parameter
bð¼M=ðM þmÞÞ and a parameter involving the friction coefficient and the slenderness of the pipe [19]. Also,
the limit cycle can be either two- or three dimensional [20], again depending on b. In the latter case, motions
are circular for a perfectly uniform system, or more complex for imperfect systems [20,3].

2.4. Some physical characteristics of the dynamics

It is important to describe the dynamical behaviour of the system in physical terms, as one would observe it
experimentally.

For a system with supported ends, as the flow velocity is increased the eigenfrequencies become smaller. As
a result, although the damping is not affected, the logarithmic decrement increases. Any imperfections in the
pipe become more noticeable since the effective restoring force (towards the stretched-straight equilibrium
configuration) becomes weaker—eventually nearly vanishing at the critical point for the onset of divergence.
In reality, the system never loses stiffness entirely, and the transition from stability to instability is, at best,
manifested by a sharp increase in the imperfection-related lateral deformation of the pipe; the less imperfect
the system, the sharper the transition, and the easier it is to identify the threshold of divergence. By the same
token, the first-mode eigenfrequency never quite vanishes; it reaches a minimum and, once the threshold is
crossed, it may actually increase—the post-divergence behaviour depending on the nature of the end-supports,
e.g. on whether axial sliding is permitted or prevented. The amplitude of buckling increases with flow.

The principal physical feature displayed by this system is flow-induced negative stiffness, increasing with
flow and eventually overwhelming the flexural restoring force. A remarkable demonstration of this behaviour
is provided by Thompson’s black box [21], as illustrated in Fig. 3: adding more weight, the scale moves up;
within the box is a fluid-conveying articulated pipe, equivalent to a continuously flexible one, the bottom end
of which is attached to the scale. Another demonstration is by touching with a finger the bottom of a hanging
cantilevered pipe conveying fluid, at flows close to but smaller than the critical flow for divergence [3]. The pipe
buckles, and it follows the finger as one tries to gently remove it, clearly demonstrating a negative stiffness.

For the cantilevered system, it is easy to observe that the system becomes more damped as the flow velocity
is increased, by its response to small external perturbations (e.g. a small push); eventually, the system becomes
overdamped. At higher flows, however, this process is reversed and, at the critical point, self-excited flutter
Fig. 3. Illustration of the negative stiffness mechanism of a buckled pipe conveying fluid, analysed by Thompson [21,3].
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Fig. 4. Photograph of a fluttering vertical pipe from the experiments by Greenwald and Dugundji [22]. The arrow shows the end of the

pipe; what is seen below that point is the free water jet.
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occurs leading to a stable limit cycle. In cases corresponding to a subcritical Hopf bifurcation, one can observe
the existence of an unstable limit cycle nesting within a stable outer one. The limit-cycle motion can be planar
(2-D), circular, or more generally oval-shaped (3-D). The amplitude increases with flow velocity. The modal
shape always shows a travelling wave component with no fixed nodes (see Fig. 4).

The principal physical characteristics in this case are (i) flow-induced negative damping, and (ii) Coriolis-
related non-classical modal shapes (no fixed nodes). Another noteworthy characteristic of this system is the
possible destabilizing effect of damping and negative energy modes—both of which are non-intuitive—
demonstrating the existence of Class A instabilities in Benjamin’s classification [23] (see Ref. [3,
Sections 3.5.3–3.5.5 and Appendix C]).

2.5. Addenda and modifications to the system and enriched dynamics

The dynamics of the basic, ‘‘bare’’ system of a pipe conveying fluid can become more interesting and
complex, particularly in the case of the non-conservative cantilevered system, by the addition of (i) elastic
foundations of different types, (ii) a solid support somewhere along the length of the pipe, (iii) spring supports
and/or dashpots at some point along the pipe, (iv) a point-mass or masses somewhere along the pipe, (v) a
plate affixed to the pipe, (vi) motion-limiting constraints.

In the case of cantilevered pipes, the dynamics is often unexpected; i.e., additional spring supports or masses
can make the system more unstable—i.e. result in smaller critical flow velocities than for the bare system.
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The case of added spring supports has received considerable attention, because the nonlinear dynamics can
be extremely interesting, e.g. the dynamics in the vicinity of a double degeneracy, where a Hopf and a
pitchfork bifurcation occur at almost the same flow velocity, leading to complex dynamics and chaos; see, e.g.,
Ref. [24]. Also, the case of added masses, especially when attached to the free end of the cantilever, result in
secondary bifurcations, complex motions and chaos; see, e.g., the work of Copeland and Moon [25] and
Paı̈doussis and Semler [26].

Also, if the fluid direction is reversed (i.e. the cantilevered pipe becomes ‘‘aspirating’’), interesting dynamics
may arise—briefly touched upon in Appendix B. Moreover, parametric resonances may occur if the flow in the
pipe is not wholly steady but contains periodic pulsations. Finally, additional features come to light when the
pipe is not straight, i.e. when it is curved, or more so if it has some 3-D shape.

All these aspects, though fascinating in themselves, are beyond the scope of this paper. The interested reader
will find them discussed in Ref. [3].

2.6. Applications

The instabilities discussed in the foregoing occur in the range u ¼ 3–10 generally. However, the
corresponding dimensional flow velocities are too high to be of real concern for most engineering applications,
unless the pipe is long and hence flexible or in special systems.

Applications of this work are related to the static stability of deep water risers and ocean mining systems [3,
Section 4.7]. Of special interest is the latter, where considerable work has been done more recently; see
Appendix B.

Another direct application of this work is the Coriolis mass-flow meter, an instrument in which the Coriolis
effect is used to measure the flow through a generally U-shaped pipe segment made to vibrate torsionally
(although other geometries are used as well).

Yet another application is the invention of hydroelastic ichthyoid propulsion, where a cantilevered plate is
attached to a pipe conveying fluid at high enough flow for the composite plate-pipe to flutter. Because of the
travelling wave component in the flutter, this can be used to generate enhanced propulsion for surface or
underwater craft [27].

It should be stressed, however, that, as in many areas of fundamental Applied Mechanics, applications
emerge 10, 20 or 50 years after the work was done, often in areas totally unforeseen by those who conducted
the original research [28]. One such potential application on which this writer and his colleagues are currently
working is based on research originally done on the dynamics of flow-powered drill-strings, which may find
application in MEMS/nanotechnology.

The main ‘‘application’’ and usefulness of this work is nevertheless in the dissemination of the experience
gained to other areas of Applied Mechanics, which is the subject of the sections that follow.

3. Dynamics of slender cylinders in axial flow

3.1. Solitary cylinders

Consider a cylinder in axial flow, as in Fig. 5. If gravity and confinement (by the external channel) effects are
neglected and the downstream is free, the simplest form of the linear equation of motion is [29]

EI
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qx4
þMU2 q

2y
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þ 2MU

q2y
qxqt
þ ðM þmÞ

q2y
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qt
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qx
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þ
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2
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qy

qt
¼ 0, ð5Þ

where M ¼ rA is the virtual, or added, mass of the fluid per unit length for unconfined flow, A being the cross-
sectional area of the cylinder and r the fluid density, yðx; tÞ is the lateral deflection, CT and CN are the viscous
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Fig. 5. Diagrammatic view of a hanging cantilevered cylinder in axial flow, in the test-section of a circulating system.
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force coefficients in the longitudinal and normal direction, respectively, CD is the linearized zero-flow viscous
drag coefficient for lateral motions, Cb is the base drag coefficient, D is the cylinder diameter, and the other
symbols are the same as for internal flow. If both ends are supported, the equation of motion is slightly more
complicated, depending also on whether the downstream end is free to slide axially, pressurization of the
external fluid, and so on; see Appendix C.

If the two ends are supported, then the standard form of the beam boundary conditions apply, as was the
case for the pipe conveying fluid. If the cylinder is cantilevered, however, it is generally supposed that the free
end is ogive-shaped (e.g., it is in the form of a half-ellipsoid). In that case, the simplest form of the boundary
conditions are

EI
q2y
qx2
¼ 0; EI

q3y
qx3
þ fMU

qy

qt
þU

qy

qx

� �
� ðmþ fMÞxe

q2y

qt2
¼ 0, (6)

in which xe ¼ ð1=AÞ
R L

L�l
AðxÞdx, l being the length of the shaped end; f is a parameter first introduced by

Hawthorne [30], equal to unity for a truly streamlined end, but generally smaller because of 3-D flow over the
end and boundary-layer effects.

Examining Eq. (5), it is immediately obvious that its first line is identical to Eq. (1). In fact the two equations
differ only because of the viscous terms constituting the rest of Eq. (5); unlike the case of internal flow, these
effects are not counterbalanced by pressure loss terms, as the mean pressure in the flow is insensitive to
boundary-layer development on the cylinder itself. However, generally, these terms are small compared to the
first four terms in Eq. (5), and so the dynamics, for cylinders with supported ends at least, may be expected to
be similar to that of the fluid-conveying pipe.2 For cantilevered pipes, however, one of the boundary
conditions is also different, so greater differences may be expected in this case.

These expectations are borne out by the typical Argand diagram of Fig. 6 for a cylinder with
simply supported ends. It is seen that, because of the viscous forces (even though internal dissipation in the
cylinder has been neglected), in this case ImðoÞa0 for uX0. However, divergence is predicted at a flow
velocity only slightly higher than u ¼ p in the first mode, followed at u ’ 2p by divergence in the second mode.
2Provided the cylinder is not very long; refer to the last two paragraphs of Section 3.1.
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Fig. 6. Argand diagram for the complex frequencies, o, of the lowest three modes of a solitary pinned–pinned cylinder in unconfined axial

flow, as functions of u, for b ¼ 0:1; �cf ¼ 1, d ¼ w ¼ 1; c ¼ a ¼ h ¼ g ¼ P ¼ G ¼ 0; the dimensionless parameters are defined in Eqs. (C.3).

From Ref. [29].
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Coupled-mode flutter is predicted at u ’ 6:48. The question of its existence comes up again. In this case,
however, DWa0. In fact,

DW ¼ �
1

2
cNðMU=DÞ

Z T

0

Z L

0

ð _y2 þU _yy0Þdxdt�
1

2
ðM=DÞ

Z T

0

Z L

0

ðc� _y2 � cT U2 _yy0Þdxdt, (7)

where cN ¼ ð4=pÞCN ; cT ¼ ð4=pÞCT and c� ¼ ð4=pÞCD; the overdot stands for qð Þ=qt and the prime for
qð Þ=qx. Clearly, the predicted dynamical behaviour is quite similar to that for internal flow (cf. Fig. 1). Thus,
in this case the coupled-mode flutter predicted in Fig. 6 is not contradicted by energy-transfer considerations:
by virtue of Eq. (7), coupled-mode flutter is quite plausible. Indeed, post-divergence flutter has been observed
in experiments [31]; see Fig. 9(a). Moreover, significantly, DW in Eq. (7) is wholly related to viscous effects,
which do not play a role in the dynamics of systems with internal flow (Section 2).

Recent calculations by means of nonlinear theory have confirmed the existence of post-divergence flutter
[32], and more recently still reconfirmed its occurrence experimentally [33]. The bifurcation diagram shown in
Fig. 7(a) clearly shows that a Hopf bifurcation arises from the post-divergence static solution branch, contrary
to linear analysis which predicted that it arises from loss of stability of the trivial equilibrium state. The Hopf
bifurcation at U ¼ 14:23 is supercritical. At higher flows, the system displays quasiperiodic and chaotic
oscillations (Fig. 7(c,d)), followed by a range of U where the statically deformed shape is regained.

The dynamics of a typical cantilevered system is illustrated in Fig. 8. It is seen that the system first loses
stability by divergence at u ’ 2:04, and then by single-mode flutter (via a Hopf bifurcation) at u ’ 5:16, and
after restabilization by flutter in the third mode at u ’ 8:17. It can be shown that the divergence is related to
the presence of the tapered free end (in this case f ¼ 0:8 suggests a fairly well streamlined end); the underlying
mechanism is related to the lift of low-aspect ratio wings [34,4]. If the end is blunt ðf ¼ 0Þ, then divergence is
not possible.
3In the nonlinear theory for cylinders with both ends supported, both the lateral (v) and the longitudinal (u) deformations have to be

taken into account; hence, to avoid confusion, the dimensionless flow velocity defined by u in Eq. (C.3) is denoted by U when considering

the nonlinear dynamics.
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Fig. 7. (a) Bifurcation diagram for a simply supported cylinder in axial flow, showing the first Galerkin generalized coordinate q1 versus

the dimensionless flow velocity U, representative of the overall system behaviour, for example for Zð0:4; tÞ, for

b ¼ 0:47; g ¼ 0:838; cn ¼ ct ¼ 0:025; � ¼ 15:81, d ¼ 1; n ¼ 0:47; P0 ¼ 4000, w ¼ 1;P ¼ G ¼ cb ¼ cd ¼ 0, obtained with six Galerkin modes

each in the axial and transverse directions. Phase-plane portraits at (b) U ¼ 14:6, (c) U ¼ 14:8, and (d) U ¼ 16. From Ref. [32].
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Naturally, the existence of post-divergence flutter in the second (and third) mode comes into
question. However, in this case also, they do materialize; see, e.g., Fig. 9(b) for a horizontal system, and
Ref. [4, Fig. 8.19] for a vertical one. The work done by the fluid forces in the course of a period of oscillation is
found [4] to be

DW ¼ � ð1� f ÞMU

Z T

0

½ _y2 þU _yy0�L dtþ
1

2
MU2cb

Z T

0

½ _yy0�L dt

�
1

2
cN ðMU=DÞ

Z T

0

Z L

0

ð _y2 þU _yy0Þdxdt�
1

2
ðM=DÞ

Z T

0

Z L

0

ðc� _y2 � cT U2 _yy0Þdxdt ð8Þ

in this case; here the overdot and prime denote, respectively, qð Þ=qt and qð Þ=qx. The energy transfer is
generally dominated by the terms on the first line of Eq. (8). It is seen that, in this case, if f ¼ 0 the work done
by the inviscid forces is maximized and, indeed, the first term becomes identical to Eq. (4). This, however,
contradicts the experimental observation, oft repeated, that a cylinder with a blunt end does not flutter at all!
The paradox is resolved by considering the second term. If the end is blunt, the form drag would be maximum,
and this term would greatly diminish or totally eclipse the all-important second component of the first term.

The dynamics of the system has been re-examined theoretically, by means of nonlinear theory, and
experimentally [35–37]. It was found that the dynamical behaviour, grosso modo, is as predicted by linear
theory, though the bifurcations do not arise in the same way. A typical bifurcation diagram, Fig. 10, (in terms
of the first component in the Galerkin-type solution, which nevertheless captures the dynamics), shows that,
after divergence, there is a brief restabilization prior to the onset of second-mode flutter, as predicted by linear
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Fig. 8. Argand diagram of the complex eigenfrequencies, o, of the lowest three modes of a solitary cantilevered cylinder with a tapered

free end in unconfined axial flow, as functions of u, for b ¼ 0:5; �cf ¼ 1; d ¼ 0; w ¼ 1; f ¼ 0:8; we ¼ 0:01; cb ¼ g ¼ 0; from Ref. [29].

Fig. 9. Photographs of flexible cylinders in axial flow undergoing second-mode flutter: (a) a pinned–pinned cylinder; (b) a cantilevered

one; from Ref. [31].
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theory. Third-mode flutter, however, emanates from the second-mode solution branch, rather than from
equilibrium. Agreement between nonlinear theory and experiment was quite good [26], both qualitatively
(Fig. 11) and quantitatively.
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Fig. 10. Typical bifurcation diagram for b ¼ 0:47; f ¼ 0:7; g ¼ 1:9; �cN ¼ �cT ¼ 0:5, cb ¼ 0:3, we ¼ 0:00667; we ¼ 0:00785; cd ¼ 0; w ¼ 1

and h ¼ 0, with N ¼ 6 (for Uo9Þ and N ¼ 8 modes in the Galerkin approximation, showing the first generalized coordinate, q1, as a

function of U: —, stable solutions; —, � � �, unstable solutions; from Ref. [37].

M.P. Paı̈doussis / Journal of Sound and Vibration 310 (2008) 462–492 473
A considerable amount of work (1996–2000) has been conducted on towed cylinders. The system under
consideration is shown in Fig. 12. The dynamics in this case is complicated by the presence of rigid-body
modes as well, thanks to the upstream end being unsupported also, albeit constrained by the towrope. For an
extensive discourse, refer to Ref. [4, Section 8.9]. Briefly, however, the low towing-speed dynamics is
dominated by rigid-body instabilities (e.g. divergence, or ‘‘criss-crossing’’ oscillations in which the cylinder and
the towrope oscillate 180� out-of-phase). At higher towing speeds flexural instabilities arise, much as for a
cantilevered cylinder. In this case, however, in addition to the tail-end shape, the ‘‘nose’’ shape and the
towrope-length/cylinder-length ratio are important parameters.

An important application of this work (Section 3.4) is for very long and slender systems ð� ¼ L=D�Oð103ÞÞ.
However, Dowling’s [38] finding that systems with � larger than a certain value are unconditionally immune to
flutter put a damper on further work. Here it is of special interest to remark on the existence of a critical point
along the long cylinder where the effective compressive force associated with the second term in Eq. (5) is
nullified by the fifth term (representing cumulative tension induced by the longitudinal drag); indeed, ahead of
this point the dynamics is dominated by the tension/compression effects (the terms proportional to q2y=qx2Þ,
whereas downstream of that point flexural forces cannot be ignored. In fact, if one considers that a large
portion of the forward part of the cylinder is effectively rigidified by the cumulative drag, there still remains
the downstream part which should behave much like a shorter cylinder in axial flow [39]; indeed, there have
been experiments suggesting that oscillatory instabilities do occur for long cantilevers subjected to axial flow,
with the oscillations being confined to a small portion near the free end [40].

It is clear that the above constitute yet another paradox. It was resolved only recently by de Langre et al.
[41]. It was found that Dowling’s sophisticated analysis proved the non-existence of flutter by presuming it to
arise via a Hopf bifurcation. If one relaxes this requirement and accepts the possibility that it may arise as a
coupled-mode flutter of the Paı̈doussis type (as in Figs. 1 and 6), then flutter is indeed found to exist.

3.2. Clustered cylinders

The dynamics of clustered cylinders in axial flow has received considerable attention [42,4, Chapter 9]
because such systems exist in many engineering applications (Section 3.4).
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Fig. 11. Shape of the cylinder: qualitative comparison between theory (a, c, e, g) and experiment (b, d, f, h) showing successively: buckling

of first-mode shape, buckling of second-mode shape, second-mode flutter, and third-mode flutter; from Ref. [37].

Fig. 12. Idealized system of a towed cylinder with non-cylindrical ‘‘nose’’ and ‘‘tail’’ segments, from Ref. [54].
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What differentiate the dynamical behaviour of such systems vis-à-vis that of isolated cylinders are
(i) the effect of proximity of the other cylinders which causes the various instabilities to occur at lower
flow velocities, and (ii) the effect of inter-cylinder motion coupling, which further diminishes the critical
flow velocities. Indeed, the latter effect means that a cluster of four cylinders possesses eight coupled
modes of first flexural-mode shape rather than just one. This results in bands of flow velocities over
which instabilities occur, as shown for instance in Fig. 13. Each of the modes shown involves a different
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Fig. 13. Regions of stability and instability for a typical four-cylinder cluster when considering the whole of the first flexural-mode group.

(Note that other instabilities arising from the second flexural-mode group also exist, starting from u ¼ 9:55, but are not shown for clarity.)

From Ref. [43].
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‘‘cross-sectional’’, i.e. inter-cylinder modal pattern. Some experimentally observed patterns of divergence and
flutter of three- and four-cylinder clusters are shown in Fig. 14.

The interested reader is referred to the aforementioned references for a wealth of interesting dynamics on
this topic.

3.3. Links with the work on pipes conveying fluid

If one follows the development of the work related to the dynamics of cylinders in axial flow in the
references cited, it becomes crystal clear that the understanding of the dynamics, the energy transfer
considerations, methods of solution, and to some extent the experimental techniques, all owe a great deal to
the earlier studies on the dynamics of pipes conveying fluid.

3.4. Applications

The very first studies on the dynamics of cylinders in axial flow were motivated by application to the
vibration of fissile fuel rods in nuclear reactors [44]. They led to a still-used semi-empirical relation for
predicting the turbulence-induced vibration levels in such systems [45,46].

The first study on the dynamics of towed flexible cylinders was conducted by Hawthorne [30] in conjunction
with his invention of the Dracone barge for the transportation of lighter than sea-water cargo, such as oil or
fresh water, towed behind a small boat.

Further research, however, was mainly curiosity driven. Nevertheless, many applications have emerged as
follows:
(i)
 dynamics of control rods and reactivity monitors in nuclear reactors [47];

(ii)
 dynamics of extruding metal and plastic rods in liquid [48,49];

(iii)
 sophisticated codes for prediction of vibration in closely spaced clusters of cylinders [50,51];

(iv)
 dynamics of nuclear reactor strings (or ‘‘stringers’’) [4];

(v)
 the turbulence-induced vibration of tube arrays in heat exchangers (in the zones where the flow is mainly

axial) [52,53];
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Fig. 14. Photographs of four- and three-cylinder systems, with cylinders made of elastomer, either (a)–(e) pinned, or (f)–(j) clamped at

both ends—but free to slide axially at the downstream end. (a) K ¼ 4, Gc ¼ 1; u ¼ 2:86 ðU ¼ 1:74m=sÞ; (b) K ¼ 4; Gc ¼ 1;
u ¼ 3:40 ðU ¼ 1:94m=sÞ; (c) K ¼ 4; Gc ¼ 1; u ¼ 4:77 ðU ¼ 2:55m=sÞ; (d) K ¼ 4; Gc ¼ 3; u ¼ 4:16 ðU ¼ 2:37m=sÞ; (e) K ¼ 3;
Gc ¼ 1; u ¼ 4:55 ðU ¼ 2:77m=sÞ; (f) K ¼ 3; Gc ¼ 2; u ¼ 5:46; (g) K ¼ 4; Gc ¼ 1, u ¼ 4:87; (h) K ¼ 4; Gc ¼ 3; u ¼ 8:24;
(i) K ¼ 4; Gc ¼ 3; u ¼ 7:20; (j) K ¼ 4; Gc ¼ 2; u ¼ 9:42. From Ref. [43].
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(vi)
 stability and vibration of extremely long ‘‘acoustic arrays’’ (or ‘‘seismic arrays’’), towed behind boats
and used in oil and gas exploration in the high seas [38,54–56];
(vii)
 the dynamics of towed pipelines for easy relocation where they are needed in the ocean [57];

(viii)
 the dynamics of articulated submarine transporters [58,4];

(ix)
 wire coating and fibre spinning [59–62];

(x)
 high-speed trains travelling in tunnels [63,64].
This work has also provided the fundamental understanding for the analysis of other systems, e.g. the
fluidelastic instabilities in annular and leakage flows [4, Chapter 11].
4. Dynamics of cylindrical shells subjected to axial flow

4.1. General dynamical behaviour

Consider a cylindrical shell either containing a flowing fluid or immersed in an axial flow.
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The linear equations of motion may be written in the following form [65,4]:

L1ðu; v;wÞ ¼ g
q2u

qt2
; L2ðu; v;wÞ ¼ g

q2v
qt2

; L3ðu; v;wÞ ¼ �g
q2w
qt2
�

qr

rsh

� �
, (9)

where the left-hand sides are linear differential operators of the axial coordinate x and the circumferential
(azimuthal) angle y; u; v and w are, respectively, the axial, circumferential and radial displacements of the
middle surface of the shell (Fig. 15). In Ref. [65] Flügge’s equations for thin shells were used, thus presuming
small thickness-to-radius ratios, h=a, but equivalent ones may be found, e.g., in Ref. [66]. Eqs. (9) are given in
full in Appendix D. In the last equation, qr is the radial surface loading per unit area, defined in terms of the
internal and external pressures on the shell, pi and pe, by

qr ¼ pi � pe. (10)

The fluid is assumed to be inviscid and incompressible for simplicity and the flow irrotational; and pi and pe

are supposed to be composed of mean steady components and the shell-deformation-related perturbation
components. The effect of the steady components is ignored here, for simplicity.

Considering fu; v;wgT ¼ fA;B;CgT exp½iðlx=aþ nyþ OtÞ� and a velocity potential for the fluid
F ¼ RðrÞ exp½iðlx=aþ nyþ OtÞ�, the perturbation components may be obtained via potential flow theory
[65] and are found to be

p�i ¼ �ri

a

nþ lInþ1ðlÞ=InðlÞ
q
qt
þUi

q
qx

� �2
w,

p�e ¼ �re

a

n� lKnþ1ðlÞ=KnðlÞ
q
qt
þUe

q
qx

� �2
w, (11)

at r ¼ a� 0þ and r ¼ aþ 0þ, respectively, for h=a51. Here ri and re are the fluid densities of the internal and
external fluids, respectively, Ui and Ue are the corresponding flow velocities, l is the axial wavenumber, and n

is the circumferential wavenumber; if the internal or external fluid is quiescent, Eqs. (11) still apply but with
either Ui or Ue equal to zero.

It is interesting to note that the terms arising from the square-brackets operator in Eq. (11) are
q2w=qt2;U2ðq2w=qx2Þ and 2Uðq2w=qxqtÞ. These terms are associated, respectively, with the inertia of the fluid,
and the centrifugal and Coriolis forces of the moving fluid. Thus, the fluid loading is wholly analogous to that
acting on a tubular beam conveying fluid, as discussed in Section 2. It is, therefore, not surprising that the
Fig. 15. A cylindrical shell, showing the coordinate system and some key dimensions.
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Fig. 16. Argand diagram of the dimensionless frequency, O, as a function of Ui for a clamped–clamped shell; n ¼ 2, and

h=a ¼ 2:27	 10�2;L=a ¼ 25:9; n ¼ 0:50; mi ¼ me ¼ 0:06. The loci on the real and imaginary axes have been drawn slightly off the axes

but parallel to them for clarity. – – –, m ¼ 1; — — —, m ¼ 2; ——, combined m ¼ 1 and m ¼ 2; —— ——, m ¼ 3. From Ref. [65].
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basic dynamical behaviour of the system is quite similar to that of a pipe conveying fluid, as shown in Figs. 16
and 17 for a clamped–clamped shell and a cantilevered shell, in both cases subjected to internal flow.

The dimensionless flow velocity, frequency and mass parameter are defined by

Uf ¼
rsð1� n2Þ

E

� �1=2
U ; Of ¼

rsð1� n2Þ
E

� �1=2
aO; mf ¼

a

h

rf

rs

, (12)

where f is either i or e, E is Young’s modulus for the shell, rs the shell material density and n the Poisson ratio.
It is seen in Fig. 16 that the system loses stability by divergence in its second circumferential mode ðn ¼ 2Þ

and first axial mode ðm ¼ 1Þ4 at a dimensionless flow velocity Ui ¼ 0:580, and in the second axial mode
ðm ¼ 2Þ at Ui ¼ 0:606. Immediately after, the first and second-mode loci coalesce, and coupled-mode flutter is
predicted at Ui ¼ 0:607. Similar dynamics is predicted for other n. Once again, the reliability of the post-
divergence predictions by linear theory is questionable and needs to be re-examined by means of nonlinear
theory, as discussed later.

In Fig. 17, it is seen that the cantilevered system loses stability by a Hopf bifurcation in the n ¼ m ¼ 2 mode
at Ui ’ 0:45 and in the n ¼ 3;m ¼ 2 mode at Ui ’ 0:5. Thus, again, the dynamics is quite similar to that of a
pipe conveying fluid.

The dynamics with external flow is quite similar to that shown in Figs. 16 and 17.
Experiments with elastomer shells and air-flow showed that cantilevered shells lose stability by flutter, as

predicted by theory [65,67]. In the case of shells with clamped ends, however, the dynamics with internal and
external (actually, annular flow, externally contained by an outer rigid pipe) was different: with external flow
the system lost stability by divergence, while with internal flow the system lost stability by flutter [65,68]. At the
time, this discrepancy was supposed to be related to the proximity of the divergence and coupled-mode flutter
boundaries (cf. Fig. 16). Later, it was theorized that this may be a case of oscillatory divergence, associated
with the large amplitudes of deflections involved in the elastomer shells.

Hence, it was clear that re-examination of the system dynamics was necessary, with the following two goals:
to clarify (i) the non-occurrence of divergence in the experiments and (ii) the predicted coupled-mode flutter by
linear theory. Clearly, therefore, this re-examination must involve both nonlinear theory and further
experiments. This is discussed in greater detail by Karagiozis et al. [69–71] and Paı̈doussis [72].
4m is the number of half-waves in the axial domain ½0;L�, L being the length of the shell.
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Fig. 18. The amplitude versus flow velocity diagram for an aluminium shell (L=R ¼ 2:98) subjected to internal water-flow and inwards

intramural pressurization; DPtmðxÞ ¼ Pann � PinnðxÞ40 and Pann � PinnðL=2Þ ¼ 5:7 kPa. From Ref. [69].

Fig. 17. Argand diagram of the dimensionless frequency, O, as a function of the dimensionless flow velocity, Ui , for a cantilevered shell;

h=a ¼ 2:27	 10�2;L=a ¼ 12:9; n ¼ 0:50;mi ¼ me ¼ 0:06, showing the first two axial modes, m ¼ 1 and 2, for n ¼ 1; 2; 3, as well as the

n ¼ 2;m ¼ 3 mode: D; n ¼ 1; �; n ¼ 2; �; n ¼ 3. From Ref. [65].
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First, the question of non-occurrence of divergence in the internal flow experiments was resolved [72,73] by
conducting experiments with stiffer (aluminium or plastic) shells, in which motions were of the order of the
shell thickness, instead of being of the order of the shell radius as with elastomer shells. It was found that the
stiffer shells did indeed lose stability by divergence, as shown in Figs. 18 and 19, as predicted by theory. Hence,
the supposition of oscillatory divergence for the more pliable shells was also given indirect support.

With this reconciliation between theory and experiment as to the mode of loss of stability of shells with
supported ends subjected to internal flow, the question of existence of coupled-mode flutter at higher flows can
meaningfully be addressed. In fact, the answer to that one was already available. The nonlinear theory of
Amabili et al. [74] for shells with simply supported ends conveying fluid predicts that they lose stability by
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Fig. 19. The aluminium shell in internal water-flow: (a) before instability and (b) when divergence has occurred. The vertical striations in

(a) are reflections of the incident light; note that in (b) they are no longer straight. (Note: these photographs are not from the same

experiment as that of Fig. 18.) From Ref. [69].

Fig. 20. Shell amplitude versus the nondimensional flow velocity of a clamped PET shell with internal water-flow, V, at x ¼ L=3 and

y ¼ 0. , Stable solution branches: , unstable solution branches; 1, solution Branch 1; 2, solution Branch 2; 3, solution Branch 3;

4, solution Branch 4; 5, solution Branch 5. From Ref. [70].
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divergence via a strongly subcritical pitchfork bifurcation, but that they do not develop coupled-mode flutter.
However, as the experiments [69] were always done with shells with clamped ends (for experimental
convenience), to close the file on this issue a new nonlinear theoretical model was developed for shells with
clamped ends [70,71]; see Appendix D. The predictions are similar to those of simply supported shells: loss of
stability by strongly subcritical divergence and no subsequent flutter. A typical result is shown in Fig. 20.
Theory and experiment are in reasonable agreement with each other quantitatively also.

Thus, with the recent (1999–2006) work on this subject, the dynamics of shells conveying fluid or immersed
in axial flow has been shown to be quite similar to that of pipes conveying fluid. Indeed, if the radial shell
deformation is expressed as wðx; y; tÞ ¼ wðxÞ cos ny, the work done by the fluid on the shell during a cycle
oscillation may be written as

DW ¼ �rpa2Iðn; lÞU
Z T

0

qw

qt

� �2

þU
qw

qx

� �
qw

qt

� �" #L

0

dt, (13)

where r is the fluid density, U the flow velocity, a and L the shell radius and length, respectively, and Iðn; lÞ a
functional of Bessel functions dependent on the circumferential and axial wavenumbers, n and m, respectively.
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Hence, the same conclusions hold as for a pipe conveying fluid. For the shell with both ends supported,
DW ¼ 0, and, as shown by nonlinear theory also, the predictions of post-divergence coupled-mode flutter by
linear theory are incorrect. For cantilevered shells, flutter does materialize and the form of Eq. (13) being
similar to Eq. (2) implies that for flutter the free-end velocity and slope must be in quadrature, which in fact is
what is observed—see, e.g., Ref. [65].

All the foregoing work presumes that the dynamics may be adequately predicted by assuming the fluid flow
to be inviscid. Moreover, unlike the problem of the fluid-conveying pipe, here friction-related forces do not
cancel out, except for n ¼ 1 (i.e. for beam-like motions). Generally speaking, it was found that, if the shell is
not short (i.e., for L=a not too small), the steady viscous effects, manifested as a variable mean pressure inside
the shell and to a smaller extent surface traction, are not negligible; see Appendix D. Thus, if the mean
pressure within the shell, as a result of viscous pressure loss, becomes lower than the outside ambient pressure,
the shell is destabilized. Unsteady viscous effects, again generally, have been found to be less important. For
details, the reader is referred to Ref. [4, Chapters 7 and 11].

Also, in all the foregoing the fluid flow was presumed to be incompressible or at least subsonic. There is an
enormous amount of work on compressible, supersonic or transonic flows in contact with cylindrical shells,
particularly because of its application to high-speed aircraft, missiles and space vehicles. The interested reader
is referred to Dowell’s work [75,76].

4.2. Confinement effects and annular flows

If the shell is placed within a cylinder or another shell and subjected to either internal flow or flow
in the annulus, or both, the dynamics becomes more complex. For one thing, if the fluid in the annulus
is dense, because the shell is very thin the natural frequencies are strongly affected by large added mass
effects. Also, the critical flow velocities are generally diminished by confinement, and more so by fluid-
dynamic coupling in the case of coaxial shells. The dynamics, nevertheless, remains broadly similar to that
described in Section 4.1, and hence fundamentally similar to the dynamics of a pipe conveying fluid [4,
Chapters 7 and 11].

4.3. Applications

Direct or indirect applications of this work are numerous. Thin-walled shells are used in piping in aircraft
and space vehicles, penstrocks in hydroelastic plants, nuclear reactors (thermal shields), aircraft engines,
submerged pipelines, shell-type Coriolis flow meters, heat exchangers, and many other systems.

Also, considering large-amplitude motions of the type already encountered in the foregoing when discussing
experiments with elastomer shells, the similarity of the basic dynamics to that of very pliable, collapsible tubes

studied for physiological application to arteries, veins, pulmonary and urinary passages is easily appreciated,
at the physical level; although much of the analytical work followed another path, more appropriate for the
very large shell deformations involved [77,78; 4, Section 7.9]. This is a huge topic on its own, and in a paper
such as this it can only be touched upon.

It is obvious, however, how much wider the range of engineering and physiological applications has
become, vis-à-vis that of the pipe conveying fluid.

5. Dynamics of plates in axial flow

5.1. General dynamical behaviour

Consider a two-dimensional plate (i.e. one of essentially infinite width) of flexural rigidity D ¼ Eh3=½12ð1�
n2Þ�;E and n being the same as elsewhere and h the plate thickness, and density rp, subjected to a flow-related
perturbation pressure p�. The linear equation of motion is

D
q4w
qx4
þ Cd

qw

qt
þ rph

q2w

qt2
¼ �p�, (14)
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Fig. 21. Frequencies of free oscillation, ReðOÞ=2p, versus flow velocity for the two-mode analysis of Dugundji et al., showing the eighth

and ninth modes, and the critical flow velocities for divergence, Ucd , and flutter, Ucf , in mph (miles/h); 1mph ¼ 1:609km=h ¼ 0:447m=s.
From Ref. [81].
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in which Cd is a viscous damping coefficient. Assuming the flow to be inviscid, the complete solution for p� has
been obtained by Kornecki et al. [79]

�p� ¼
r
pL

Z 1

0

L2 q
2w

qt2
þ 2UL

q2w
qxqt
þU2 q

2w

qx2

� �
ln jx� xjdx� RðxÞ

� �
, (15)

where

RðxÞ ¼ U2f½w
0

ð1Þ þ ðL=UÞ _wð1Þ� lnð1� xÞ � ½w
0

ð0Þ þ ðL=UÞ _wð0Þ� ln xg, (16)

in which x ¼ x=L and x ¼ u=L; u being a dummy variable; t is dimensional time, and ð _ Þ ¼ qð Þ=qt, while
ð Þ

0
¼ qð Þ=qx; r is the fluid density.

The integrand on the right-hand side of Eq. (15) has the same functional form as in Eq. (1), and the function
ln j x� x j may be viewed as the effect of spatial memory. There is, however, a significant difference in the
theories in Sections 2–4 and that for the plates here: for pipes, cylinders and shells the local fluid forces depend
only on the local displacement,5 while for the plate problem the local forces depend on the global flow field.
Thus, for cylinders one has a constant added mass per unit length, and for shells the same (at least for any
ðn; lÞ combination). For pipes conveying fluid, this is even clearer: the mass involved is the mass per unit length
of the fluid conveyed. This is not so for the plate, as discussed further by Guo and Paı̈doussis [80].
Nevertheless, the dynamics of the plates in axial flow is quite similar to that in the foregoing.

Plates with supported ends lose stability by divergence and then, much as cylinders in axial flow, by coupled-
mode flutter; see, e.g., Fig. 21. These theoretical findings were broadly supported by experiments conducted by
Dugundji et al. [81].

Writing

U� ¼
rph

D

� �1=2

UL; U ¼ U�m1=2, (17)

where m ¼ rL=rph, one finds the critical flow velocity for divergence to be

Ucd ¼ ap, (18)

with a varying from 1.00 to 1.40 depending on the approximations introduced [80–84; 4, Table 10.1].
5This is not necessarily physically true. It is, nevertheless, inherent in the approximate theories employed.
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Fig. 22. Multiflash photograph of a fluttering sheet of paper m� ¼ 2:70; from Ref. [85].
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In the case of cantilevered plates, the dynamics is much clearer: the system loses stability by flutter, as
predicted by theory and observed experimentally (see, e.g., Fig. 22). The similarity in form of the fluttering
plate to a fluttering pipe, in all its features, is quite remarkable. In this case, however, the prediction is
complicated by the fact that, generally, the vorticity shed by the flapping plate into the wake should be taken
into account [79,86,87].

Surprisingly, agreement between theory and experiment is not very good generally, although it is good in some
cases. From Fig. 23 it is clear that agreement improves (but not for all data unfortunately) as m 
 1=m� is increased.
This can be attributed to the effect of the wake on the plate dynamics becoming weaker for longer plates [87].

Much work has been done on this topic (work on three-dimensional plates in axial flow, in compressible and
supersonic flows, nonlinear analyses, and so on), and what has been discussed here is a very small segment
thereof, indeed. However, the purpose of this paper was to demonstrate the similarities and the implicit and
explicit transfer of knowledge, understanding and so on, from the other systems discussed before, and this has
been done—albeit in a much abbreviated fashion.

5.2. Applications

In this case, the premier example of a plate in axial flow is the fluttering flag. However, there is a profusion
of technologically important applications [4, Chapter 10], e.g.:
(i)
 skins of aircraft, submarine and space vehicles;

(ii)
 parallel-plate assemblies used in some nuclear reactors;
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Fig. 23. The flutter boundary of cantilevered flexible plates in axial flow. For the results obtained using the ‘‘present theory’’ by Tang &

Paı̈doussis, the system parameters used are: l0 ¼ 0:01; a ¼ 0:004 and CD ¼ 0; rF is the fluid density. From Ref. [86].

M.P. Paı̈doussis / Journal of Sound and Vibration 310 (2008) 462–492484
(iii)
 modelling of pulmonary passages;

(iv)
 travelling web in paper and plastic tape production;

(v)
 printing, involving individual paper sheets;

(vi)
 studies on soft-palate-related snoring;

(vii)
 energy-harvesting foils.
6. Conclusion

While most of the basic work on the dynamics of pipes conveying fluid was being conducted, this was
viewed as an academic study in Applied Mechanics, of little practical interest. The objective of this paper was
to show how this work was used as the foundation in the study of many other related problems; hence the
expression ‘‘radiation of the knowledge gained’’ in the title.

Indeed, the fundamental understanding and experience gained and the methodology employed in the study
of the fluid-conveying pipe problem has proved to be very useful in the study of several other problems,
particularly shells conveying or immersed in axial flow, cylinders and plates in axial flow, and (although
discussed hardly at all in this paper, for brevity) annular and leakage flow problems—well known for their
monumental destructiveness [47,88]. Other problems not discussed, a little farther in their nature from those
mentioned above, have also benefited from the same methodology; an example is the study of ovalling
oscillations of shells in cross-flow, with application to wind-induced ovalling of tall chimneys [88,89].

Throughout, both the similarities in the basic dynamics of the system considered, but also the differences,
have been discussed.

There is no doubt that the great majority of the work on the many facets and modified versions of the basic
system of a pipe conveying fluid were curiosity driven, with no practical motivation [28]. Nevertheless, as
demonstrated in this paper by the ever-widening range of engineering and physiological applications
(Sections 3–5), the effort expended in carefully studying pipes conveying fluid has been repaid many times
over, not only from the fundamental point of view but in terms of applications as well. It was mentioned in the
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Introduction that one can find at least 550 important contributions to the pipe-conveying-fluid problem; one
can safely add 1500–2000 important studies in the ‘‘offshoots’’, equally if not more important!
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Appendix A

A.1. Other forms of the equation of motion of a pipe conveying fluid

If the pipe is subjected to an externally applied tension T , internal pressurization p, if it is vertically mounted
so that gravity is operative, in contact with a Winkler-type elastic foundation of stiffness K, and moreover
internal dissipation is taken into account by means of a Kelvin–Voigt model, as well as external viscous
damping with the surrounding ambient fluid (with frictional coefficient c), the linear equation of motion—a
generalization of Eq. (1)—is

E�
q
qt
þ E

� �
I
q4w
qx4
þ MU2 � T þ pAð1� 2ndÞ � ðM þmÞg�M

dU

dt

� �
ðL� xÞ

� �
q2w
qx2

þ 2MU
q2w

qxqt
þ ðM þmÞg

qw

qx
þ Kwþ c

qw

qt
þ ðM þmÞ

q2w
qt2
¼ 0, ðA:1Þ

in which the flow velocity may not be steady; hence the dU=dt term.
This equation may be written in the dimensionless form

a_Z0000 þ Z0000 þ fu2 � GþPð1� 2ndÞ þ ðb1=2 _u� gÞð1� xÞgZ00

þ 2b1=2u_Z0 þ gZ0 þ kZþ s_Zþ €Z ¼ 0, ðA:2Þ

where the overdot stands for qð Þ=qt and ð Þ0 ¼ qð Þ=qx, in which the following dimensionless system
parameters have been utilized:

x ¼
x

L
; Z ¼

w

L
; t ¼

EI

M þm

� �1=2
t

L2
,

u ¼
M

EI

� �1=2

LU ; b ¼
M

M þm
; g ¼

ðM þmÞL3

EI
g; G ¼

TL2

EI
,

P ¼
pAL2

EI
; k ¼

KL4

EI
; a ¼

I

EðM þmÞ

� �1=2
E�

L2
; s ¼

cL2

½EIðM þmÞ�1=2
; (A.3)

the dimensionless frequency o is defined by

o ¼
M þm

EI

� �1=2

OL2, (A.4)

where O is the radian frequency. Eq. (A.2) applies both to cases of pipes with supported ends and to
cantilevered ones.

The boundary conditions are identical to those for a beam with the same support conditions.
The nonlinear equations of motion, however, are different for these two cases, because (i) in the case of a

cantilevered pipe, a reasonable assumption is that the pipe centreline is inextensible, while (ii) in the case of
supported ends, axial extension must be accounted for.
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For a cantilevered pipe, the dimensionless nonlinear equation is given by

a_Z0000 þ Z0000 þ €Zþ 2U
ffiffiffi
b

p
_Z0ð1þ Z02Þ

þ Z00 U2ð1þ Z02Þ þ ð _U
ffiffiffi
b

p
� gÞð1� xÞ 1þ

3

2
Z02

� �� �

þ gZ0 1þ
1

2
Z02

� �
þ 1þ a

q
qt

� �
½Z0000Z02 þ 4Z0Z00Z000 þ Z003�

� Z00
Z 1

x

Z x

0

ð_Z02 þ Z0 €Z0Þdxdxþ
Z 1

x

1

2
_U

ffiffiffi
b

p
Z02 þ 2U

ffiffiffi
b

p
Z0 _Z0 þU2Z0Z00

� �
dx

� �

þ Z0
Z x

0

ð_Z02 þ Z0 €Z0Þdx ¼ 0, ðA:5Þ

whereU is used instead of u for the dimensionless flow velocity, to avoid confusion for the pipe with supported
ends.

For the pipe with supported ends, defining by u and v the displacements of the centreline along the
undeformed axis and perpendicular to it, respectively, the equations of motion are

€uþ 2U
ffiffiffi
b

p
_u0 þU2u00 þ _U

ffiffiffi
b

p
u0 �Au00 � ðv00v000 þ v0v0000Þ

þ ð _U
ffiffiffi
b

p
� gÞ½1

2
v02 � ð1� xÞv0v00� þ ðG�A�PÞv0v00 ¼ 0, ðA:6Þ

€vþ 2U
ffiffiffi
b

p
_v0 þU2v00 � ðG�PÞv00 þ v0000 þ gv0 þ ðG�A�PÞðu00v0 þ u0v00 þ 3

2
v02v00Þ

� ð3u000v00 þ 4u00v000 þ 2u0v0000 þ v0u0000 þ 2v003 þ 2v02v0000 þ 8v0v00v000Þ

þ ð _U
ffiffiffi
b

p
� gÞ½v0u0 þ 1

2
v03 � ð1� xÞð�v00 þ u00v0 þ u0v00 þ 3

2
v02v00Þ� ¼ 0, ðA:7Þ

where u ¼ u=L; v ¼ v=L, the dimensionless tension G ¼ TðLÞL2=EI , the axial flexibility A ¼ EA L2=EI , and
the pressure at the downstream end P ¼ PðLÞL2=EI .

The main purpose for providing the nonlinear equations in this appendix is to show how much more
complicated they are, compared to Eq. (A.2), even though they are correct to only Oð�3Þ, where Z and v are
of Oð�Þ.

Appendix B

B.1. Dynamics of aspirating pipes

Initially, it was thought that an aspirating pipe becomes unstable by flutter at infinitesimally small flow
velocities if dissipative damping is neglected [90]. This conclusion was arrived at by replacing U by �U in an
equation similar to Eq. (1) but more appropriate to the ocean mining system. Then in Eq. (2), the signs are
reversed, showing a positive energy transfer for small U. If dissipative forces are accounted for, the instability
does not then occur at infinitesimally small U, but at very small U nonetheless.

This was later revised and related to Feynman’s quandary on the direction of rotation of an aspirating
rotary sprinkler [91], suggesting that flutter never arises. As pointed out by Kuiper and Metrikine [92],
however, the ‘‘proof’’ was at best incomplete, and they suggested that the non-occurrence of flutter
may be related to dissipative forces, in particular dissipation with the surrounding fluid (typically water).6

This forced yet another re-evaluation of the stability of the system, by Paı̈doussis et al. [93], in which it was
found that whether flutter occurs or not depends intimately on the details of the flow field in the vicinity of the
intake.

Paı̈doussis et al. [93] presented two variants of the equation of motion and associated boundary conditions,
differing as to the direction of the incoming flow. If this flow direction remains unchanged as the pipe
6Further work on this has recently been published [94].
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oscillates, then flutter is shown to be impossible. If, however, as is more likely, the incoming flow is tangential
to the pipe end, then flutter is possible; but whether it occurs or not depends on the flow field near the intake,
currently being studied by CFD.

In this latter case, it is found that

DW ¼ �½1� ð1� aÞð1þ gÞ�MU2

Z T

0

qw

qx

qw

qt

�� ����
L

dt,

where a ¼ v=U is the ratio of the average flow velocity before entry into the pipe to that within the pipe, and g is
a tension effect on the pipe itself related to the flow near the intake. Typically 1� a40:5 and 1:7o1þ go2:4.
Taking 1� a ¼ 0:6 and 1þ g ¼ 2, for example, one obtains DW ¼ þ0:2MU2

R T

0 ðqw=qxÞðqw=qtÞ

 �

L
dt. By the

arguments for a discharging pipe, this would mean a negative work input if ½ðqw=qxÞðqw=qtÞ�Lo0, and hence a

stable system. However, the perfidiousness of the system is unbounded: if in one mode ½ðqw=qxÞðqw=qtÞ�L is
negative, it is positive in another; so, energy can be extracted from the fluid in any case, unless ð1� aÞð1þ gÞ ¼ 1
exactly. Hence, it seems likely that, in principle, an instability is possible if the flow enters tangentially.
Nevertheless, the small factor multiplying MU2, on the one hand, and dissipative forces, on the other, mean that
instability occurs at flow velocities beyond the range of practical interest for the ocean mining application [93];
this also explains its non-occurrence in the experiments with the pipe immersed in water [3].

Still, some problems refuse to be neatly laid to rest. New experiments by Kuiper et al. [95], reported
at the Delft EUROMECH 484 where this very paper was presented, delivered a truly Delphic state-
ment as to whether such systems are susceptible to flutter or not: something like ‘‘they flutter nay
remain stable’’, with the ambiguity being where one puts the semicolon. In the event, the ambiguity relates
to what time one observes the system: at first it does not, then it does flutter, and later it stops again, and
so on!
Appendix C

C.1. The equations of motion of a cylinder in axial flow

Consider a cylinder of cross-sectional area A, diameter D, length L, mass per unit length m, flexural rigidity
EI, Poisson ratio n and Kelvin–Voigt damping coefficient E�, immersed in a vertical arrangement in axial flow,
so that x ¼ 0 is at the upper, upstream end, and x ¼ L at the downstream end (see Fig. 5). The mean fluid
velocity is U and the fluid density r. It is supposed that the cylinder may be subjected to an externally applied
tension T and a fluid pressurization p. Assuming an inextensible centreline, the equation of motion, a fuller
form than Eq. (5), for small lateral motion yðx; tÞ is [4, Chapter 8]

E�
q
qt
þ E

� �
I
q4y

qx4
þ rA

q
qt
þU

q
qx

� �2

y� d½T þ ð1� 2nÞðpAÞ�

�

þ
1

2
rDU2CT þ ðm� rAÞg

� �
1�

1

2
d

� �
L� x

� �
þ

1

2
rD2U2ð1� dÞCb

�
q2y
qx2

þ
1

2
rDUCN

qy

qt
þU

qy

qx

� �
þ

1

2
rDCD

qy

qt
þ ðm� rAÞg

qy

qx
þm

q2y
qt2
¼ 0, ðC:1Þ

where CN ;CT ;CD and Cb have been defined in Section 3.1; d ¼ 0 signifies that the downstream end is free to
slide axially, and d ¼ 1 if the supports do not allow net axial extension.

In this equation, rA is the virtual or ‘‘added’’ mass of the fluid per unit length, which applies to unconfined
flow. If the flow is confined, e.g. by being contained in an outer cylindrical conduit, then this added mass
becomes wrA. For cylindrical confinement, w ¼ ½ðD2

ch þD2Þ=ðD2
ch �D2Þ�41 increases with increasing
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confinement; Dch ¼ 2R0 is the diameter of the flow-channel. In this case, the equation of motion becomes

E�
q
qt
þ E

� �
I
q4y
qx4
þ wrA

q
qt
þU

q
qx

� �2

y� d½T þ ð1� 2nÞðpAÞ�

�

þ
1

2
rDU2Cf 1þ

D

Dh

� �
þ ðm� rAÞg

� �
1�

1

2
d

� �
L� x

� �

þ
1

2
rD2U2ð1� dÞCb

�
q2y
qx2
þ

1

2
rDUCf

qy

qt
þU

qy

qx

� �
þ

1

2
rDCD

qy

qt

þ ðm� rAÞgþ
1

2
rDU2Cf

D

Dh

� �� �
qy

qx
þm

q2y

qt2
¼ 0, ðC:2Þ

where Dh ¼ 4Ach=Stot is the hydraulic diameter, and CN ¼ CT ¼ Cf has been used for simplicity.
The boundary conditions have been discussed briefly in Section 3.1 and more fully in Ref. [4].
Defining the dimensionless quantities

x ¼ x=L; Z ¼ y=L and t ¼ fEI=ðmþ rAÞg1=2t=L2.

a ¼
I

EðrAþmÞ

� �1=2
E�

L2
; b ¼

rA

rAþm
; g ¼

ðm� rAÞg L3

EI
; G ¼

TL2

EI
,

� ¼
L

D
; u ¼

rA

EI

� �1=2

UL; P ¼
pA L2

EI
; h ¼

D

Dh

; cf ¼
4

p
Cf ,

cN ¼
4

p
CN ; cT ¼

4

p
CT ; cb ¼

4

p
Cb; c ¼

4

p
rA

EI

� �1=2

LCD, ðC:3Þ

the dimensionless forms of Eqs. (C.1) and (C.2) are

a
q
qt
þ 1

� �
q4Z

qx4
þ u2 � d½Gþ ð1� 2nÞP� �

1

2
�cT u2 þ g

� �
1�

1

2
d

� �
� x

� ��

�
1

2
ð1� dÞcbu2

�
q2Z

qx2
þ 2b1=2u

q2Z
qxqt
þ

1

2
�cNu2 þ g

� �
qZ
qx

þ
1

2
�cNb

1=2uþ
1

2
�cb1=2

� �
qZ
qt
þ

q2Z
qt2
¼ 0 ðC:4Þ

and

a
q5Z

qx4qt
þ

q4Z

qx4
þ wu2 � d½Gþ ð1� 2nÞP� �

1

2
�cf u2ð1þ hÞ þ g

� �
1�

1

2
d

� �
� x

� ��

�
1

2
ð1� dÞcbu2

�
q2Z

qx2
þ 2wb1=2u

q2Z
qxqt
þ

1

2
�cf u2ð1þ hÞ þ g

� �
qZ
qx

þ
1

2
�cf b

1=2uþ
1

2
�cb1=2

� �
qZ
qt
þ ½1þ ðw� 1Þb�

q2Z
qt2
¼ 0. ðC:5Þ

The dimensionless frequency o is defined as

o ¼
rAþm

EI

� �1=2

OL2 (C.6)

in terms of the radian frequency O.
If the centreline is extensible, then the system is governed by a pair of equations of motion—cf. the last two

equations of Appendix A; refer to Refs. [4, Appendix T; 32].



ARTICLE IN PRESS
M.P. Paı̈doussis / Journal of Sound and Vibration 310 (2008) 462–492 489
Appendix D

D.1. The equations of motion of a cylindrical shell subjected to internal or external axial flow

Flügge’s [96] equations of motion for a thin cylindrical shell, modified to take into account fluid loading
associated with an internal pressure pi and an external pressure po, are:

L1ðu; v;wÞ ¼ u00 þ
1� n
2

u�� þ
1þ n
2

v0� þ nw0 þ k
1� n
2

u�� � w000 þ
1� n
2

w0��
� �

¼ g
q2u

qt2
,

L2ðu; v;wÞ ¼
1þ n
2

u0� þ v�� þ
1� n
2

v00 þ w� þ k
3

2
ð1� nÞ v00 �

3� n
2

w00�
� �

¼ g
q2v

qt2
,

L3ðu; v;wÞ ¼ nu0 þ v� þ wþ k
1� n
2

u0�� � u000 �
3� n
2

v00� þ r4wþ 2w�� þ w

� �

¼ � g
q2w
qt2
�

qr

rsh

� �
, ðD:1Þ

where

k ¼ 1
12
ðh=aÞ2; g ¼ rsa

2ð1� n2Þ=E,

ð Þ
0
¼ aqð Þ=qx; ð Þ� ¼ qð Þ=qy; r2 ¼ a2ðq2=qx2Þ þ q2=qy2, (D.2)

rs being the density of the shell material and qr ¼ ðpi � poÞjr¼a; the last equation has been multiplied by �1, to
achieve symmetry of the operator-matrix of the left-hand side. The following two mass parameters are also
important to fully define the system:

mi ¼
ria

rsh
; me ¼

rea

rsh
, (D.3)

where ri and re are the densities of the fluid in and out of the shell, respectively, h is the wall thickness and a

the shell radius.
For a clamped end, the boundary conditions are

u ¼ v ¼ w ¼ 0; w0 ¼ 0. (D.4)

For a free end they are

u0 þ nv� þ nw� kw00 ¼ 0,

w00 þ nw�� � nv� � u0 ¼ 0,

w000 þ ð2� nÞw0�� �
3� n
2

v0� þ
1� n
2

u�� � u00 ¼ 0,

u� þ v0 þ 3kðv0 � w0�Þ ¼ 0. (D.5)

If the steady viscous effects—associated with a varying pressure due to frictional pressure loss, for the case
of internal flow, and surface traction—are taken into account, then, using the notation of Eq. (9), the
equations of motion become

L1ðu; v;wÞ þ q1u
00 þ q2ðv

� þ wÞ þ q3ðu
�� � w0Þ ¼ gðq2u=qt2Þ,

L2ðu; v;wÞ þ q1v00 þ q3ðv
�� þ w�Þ ¼ gðq2v=qt2Þ,

L3ðu; v;wÞ � q1w
00 � q3ðu

0 � v� þ w��Þ ¼ �g½ðq2w=qt2Þ � qr=rsh�, (D.6)
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where Liðu; v;wÞ; i ¼ 1; 2; 3, are as in Eqs. (9), qr ¼ ðpi � poÞjr¼a is the perturbation pressure associated with
shell motions [4, Section 7.2.3], and

fq1; q2; q3g ¼ ½ð1� n2Þ=Eh�fNx; apx; aprg, (D.7)

in which

Nx ¼ Bð1
2

L� xÞ � nað1
2

LC þDÞ; Ny ¼ �aðCxþDÞ (D.8)

and

px ¼ B; pr ¼ �ðCxþDÞ; (D.9)

B;C;D are constants to be determined in each particular case. In this, it has been assumed that the form of the
axial (traction) and radial (pressure-related) stresses is as in Eqs. (D.8).

Nonlinear computations have generally been done by means of the Donnell nonlinear shallow-shell
equations. These are not given here for brevity, but may be found in Refs. [4,70,71,74], for instance.
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